Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 369: 722-733, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38583575

RESUMEN

The existence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) greatly limits the application of chemotherapy in glioma. To address this challenge, an optimal drug delivery system must efficiently cross the BBB/BBTB and specifically deliver therapeutic drugs into glioma cells while minimizing systemic toxicity. Here we demonstrated that glucose-regulated protein 78 (GRP78) and dopamine receptor D2 were highly expressed in patient-derived glioma tissues, and dopamine receptors were highly expressed on the BBB. Subsequently, we synthesized a novel "Y"-shaped peptide and compared the effects of different linkers on the receptor affinity and targeting ability of the peptide. A peptide-drug conjugate (pHA-AOHX-VAP-doxorubicin conjugate, pHA-AOHX-VAP-DOX) with a better affinity for glioma cells and higher solubility was derived for glioma treatment. pHA-AOHX-VAP-DOX could cross both BBB and BBTB via dopamine receptor and GRP78 receptor, and finally target glioma cells, significantly prolonging the survival time of nude mice bearing intracranial glioma. Furthermore, pHA-AOHX-VAP-DOX significantly reduced the toxicity of DOX and increased the maximum tolerated dose (MTD). Collectively, this work paves a new avenue for overcoming multiple barriers and effectively delivering chemotherapeutic agents to glioma cells while providing key evidence to identify potential receptors for glioma-targeted drug delivery.

2.
Nat Commun ; 14(1): 7833, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030620

RESUMEN

Controlling the selectivity of the electrocatalytic reduction of carbon dioxide into value-added chemicals continues to be a major challenge. Bulk and surface lattice strain in nanostructured electrocatalysts affect catalytic activity and selectivity. Here, we unravel the complex dynamics of synergistic lattice strain and stability effects of Cu-Ag tandem catalysts through a previously unexplored combination of in situ nanofocused X-ray absorption spectroscopy and Bragg coherent diffraction imaging. Three-dimensional strain maps reveal the lattice dynamics inside individual nanoparticles as a function of applied potential and product yields. Dynamic relations between strain, redox state, catalytic activity and selectivity are derived. Moderate Ag contents effectively reduce the competing evolution of H2 and, concomitantly, lead to an enhanced corrosion stability. Findings from this study evidence the power of advanced nanofocused spectroscopy techniques to provide new insights into the chemistry and structure of nanostructured catalysts.

3.
Food Chem X ; 19: 100840, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37680758

RESUMEN

In this study, the bacterial communities and flavor metabolites of 27 traditional naturally fermented sauerkraut samples collected from nine regions of Heilongjiang Province in Northeast China were investigated. The dominant genera were Lactobacillus, Pseudomonas, Alcaligenes, Arcobacter, Pseudarcobacter, Lactococcus, Comamonas, Pediococcus, Prevotella, and Insolitispirillum. A total of 148 volatile compounds were detected in seven categories; esters and acids were the most abundant volatiles. Additionally, the highest content (15.96 mg/g) of lactic acid was detected in YC1. Acetic acid, oleic acid, palmitic acid, elaidic acid, and dehydroacetic acid were the key differential volatile compounds, which may be related to the bacterial communities. Spearman's correlation analysis revealed that Lactococcus and Lactobacillus were significantly positively correlated with flavor metabolites, suggesting that they may play a more significant role in flavor formation. The results of this study can help in the development of better quality of fermented vegetables.

4.
ACS Omega ; 8(7): 7211-7221, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844555

RESUMEN

Effective oral therapies are urgently required to treat KRASG12D mutant cancers. Therefore, synthesis and screening were performed for 38 prodrugs of MRTX1133 to identify an oral prodrug of MRTX1133, a KRASG12D mutant protein-specific inhibitor. In vitro and in vivo evaluations revealed prodrug 9 as the first orally available KRASG12D inhibitor. Prodrug 9 exhibited improved pharmacokinetic properties for the parent compound in mice and was efficacious in a KRASG12D mutant xenograft mouse tumor model after oral administration.

5.
J Agric Food Chem ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36734010

RESUMEN

Butyl butyrate has shown wide applications in food, cosmetic, and biofuel sectors. Currently, biosynthesis of butyl butyrate still requires exogenous addition of precursors and lipase, which increases the production cost and limits further large-scale development. In this study, a microbial consortium was first designed to realize direct butyl butyrate production from lignocellulose. The highest butyl butyrate concentration of 34.42 g/L was detected in the solvent phase from 60 g/L glucose using a microbial coculture system composed of Clostridium acetobutylicum NJ4 and Clostridium tyrobutyricum LD with the elimination of butyric acid supplementation. Meanwhile, 13.52 g/L butyl butyrate was synthesized from 60 g/L glucose using a microbial consortium composed of three strains including strain NJ4, strain LD, and Escherichia coli BL21- pET-29a(+)-LE without the addition of any exogenous precursors and lipase. In addition, 2.94 g/L butyl butyrate could be directly produced from 60 g/L microcrystalline cellulose when Trichoderma asperellum was added to the above-mentioned three-strain microbial consortium. This four-strain microbial consortium represents the first study regarding the direct butyl butyrate production from lignocellulose without the supplementation of exogenous precursors and lipase, which may be extended to the biosynthesis of other short-chain esters, such as ethyl acetate and butyl lactate.

6.
3 Biotech ; 12(11): 320, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36276468

RESUMEN

A wild-type Rhodosporidium toruloides strain Z11 which could utilize molasses to co-produce high amount of lipid and carotenoids was isolated and characterized. The genome of strain Z11 with a G + C content of 59.0% was estimated to be 22.6 Mb and contained 5290 encoded protein sequences. Among these annotated genes, the ATP citrate (pro-S)-lyase, two malic enzymes (MaeA and MaeB) and the geranylgeranyl pyrophosphate synthase play key roles for the production of lipids and carotenoids. In addition, a ß-fructofuranosidase (SacA) was identified, which may contribute to the utilization of molasses.

7.
Opt Lett ; 47(19): 4877-4880, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181140

RESUMEN

We report a phase-shifting method based on a pinhole point diffraction interferometer. Using the random two-frame phase-shifting algorithm, the piezo electric transducer (PZT) drives the pinhole moving a certain step length along the axis of the tested aspheric mirror. In each step, the CCD collects an interferogram. Then two interferograms are processed by the phase-shifting algorithm. After that, we can acquire the phase map of the interferograms. This technique has great potential for increasing the measuring aperture of the aspheric mirror in the pinhole point diffraction interferometer (PPDI) under the premise of keeping the advantages of PPDI of which the optic devices, as well as error sources, are few behind the substrate.

8.
Acta Pharm Sin B ; 12(4): 2000-2013, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847517

RESUMEN

Thrombolytic agents have thus far yielded limited therapeutic benefits in the treatment of thrombotic disease due to their short half-life, low targeting ability, and association with serious adverse reactions, such as bleeding complications. Inspired by the natural roles of platelets during thrombus formation, we fabricated a platelet-based delivery system (NO@uPA/PLTs) comprising urokinase (uPA) and arginine (Arg) for targeted thrombolysis and inhibition of re-embolism. The anchoring of uPA to the platelet surface by lipid insertion increased the thrombotic targeting and in vivo circulation duration of uPA without disturbing platelet functions. Nitric oxide (NO) generated by the loaded Arg inhibited platelet aggregation and activation at the damaged blood vessel, thereby inhibiting re-embolism. NO@uPA/PLTs effectively accumulated at the thrombi in pulmonary embolism and carotid artery thrombosis model mice and exerted superior thrombolytic efficacy. In addition, the platelet delivery system showed excellent thrombus recurrence prevention ability in a mouse model of secondary carotid artery injury. The coagulation indicators in vivo showed that the platelet-based uPA and NO co-delivery system possessed a low hemorrhagic risk, providing a promising tool for rapid thrombolysis and efficient inhibition of posttreatment re-embolism.

9.
Front Psychol ; 12: 742742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867623

RESUMEN

With the rapid development of digitalisation, multimedia and network-based communication technology, all walks of life are undergoing change and development driven by the application of the internet to conventional industries. Especially because of the outbreak of coronavirus disease of 2019 (COVID-19), English teaching and learning modes are undergoing revolutionary changes worldwide (Wong et al., 2020). Online courses and materials have become the norm for students, and combined with offline English learning activities, an online and offline blended learning mode has ultimately emerged (Graham, 2006; Whittaker, 2013). Whereas blended learning has been considered in several contexts, it has been less investigated in the field of blended English learning mode for the listening comprehension ability and emotional experiences of young learners of Chinese English as a foreign language (EFL) while doing the tasks. Thus, this study focussed on the achievement and experience of Chinese EFL junior high school students during blended learning using Quizlet software as the online learning tool. This study aimed to explore the following: (1) the effect of the online and offline blended mode on the learning outcomes of students and (2) the experience of students while engaging with blended tasks in terms of their learning interest, attitude, and strategy use in English listening learning. A 4-month teaching intervention involving the online and offline blended mode was conducted in English listening classes. Adopting mixed-methods qualitative and quantitative research, this study examined the engagement process of two classes of students and analysed data from their English listening tests and follow-up in-depth interviews. The results suggested that the blended activity was conducive to enhancing the listening performance of students. Moreover, the attitudes of students toward English listening learning shifted from a relatively negative engagement to a more positive one. Meanwhile, the interest of students grew and their learning strategies became more diversified. These findings have implications for English teaching and learning activity design for young learners.

10.
Biotechnol Biofuels ; 14(1): 203, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34656153

RESUMEN

BACKGROUND: Butyl acetate has shown wide applications in food, cosmetics, medicine, and biofuel sectors. These short-chain fatty acid esters can be produced by either chemical or biological synthetic process with corresponding alcohols and acids. Currently, biosynthesis of short chain fatty acid esters, such as butyl butyrate, through microbial fermentation systems has been achieved; however, few studies regarding biosynthesis of butyl acetate were reported. RESULTS: In this study, three proof-of-principle strategies for the one-pot butyl acetate production from glucose through microbial fermentation were designed and evaluated. (1) 7.3 g/L of butyl acetate was synthesized by butanol-producing Clostridium acetobutylicum NJ4 with the supplementation of exogenous acetic acid; (2) With the addition of butanol, 5.76 g/L of butyl acetate can be synthesized by acetate-producing Actinobacillus succinogenes130z (ΔpflA); (3) Microbial co-culture of C. acetobutylicum NJ4 and A. succinogenes130z (ΔpflA) can directly produce 2.2 g/L of butyl acetate from glucose by using microbial co-culture system with the elimination of precursors. Through the further immobilization of A. succinogenes130z (ΔpflA), butyl acetate production was improved to 2.86 g/L. CONCLUSION: Different microbial mono- and co-culture systems for butyl acetate biosynthesis were successfully constructed. These strategies may be extended to the biosynthesis of a wide range of esters, especially to some longer chain ones.

11.
Opt Express ; 29(11): 16406-16421, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154204

RESUMEN

In three dimensional profilometry, phase retrieval technique plays a key role in signal processing stage. Fringe images need to be transformed into phase information to obtain the measurement result. In this paper, a new phase retrieval method based on deep learning technique is proposed for interferometry. Different from conventional multi-step phase shift methods, phase information can be extracted from only a single frame of an interferogram by this method. Here, the phase retrieval task is regarded as a regression problem and a hypercolumns convolutional neural network is constructed to solve it. Firstly, functions and each component of the network model are introduced in details; Then, four different mathematical functions are adopted to generate the training dataset; training and validation strategies are also designed subsequently; Finally, optimization processing is performed to eliminate local data defects in initial results with the help of polynomial fitting. In addition, hardware platform based on point diffraction interferometer is fabricated to support this method. Concluded from the experiment section, the proposed method possesses a desirable performance in terms of phase retrieval, denoising and time efficiency.

12.
mBio ; 12(3): e0059221, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34126765

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of nosocomial infections, which are becoming increasingly difficult to treat due to antibiotic resistance. Polyphosphate (polyP) plays a key role in P. aeruginosa virulence, stress response, and antibiotic tolerance, suggesting an attractive drug target. Here, we show that the small molecule gallein disrupts polyphosphate homeostasis by inhibiting all members of both polyphosphate kinase (PPK) families (PPK1 and PPK2) encoded by P. aeruginosa, demonstrating dual-specificity PPK inhibition for the first time. Inhibitor treatment phenocopied ppk deletion to reduce cellular polyP accumulation and attenuate biofilm formation, motility, and pyoverdine and pyocyanin production. Most importantly, gallein attenuated P. aeruginosa virulence in a Caenorhabditis elegans infection model and synergized with antibiotics while exhibiting negligible toxicity toward the nematodes or HEK293T cells, suggesting our discovery of dual-specificity PPK inhibitors as a promising starting point for the development of new antivirulence therapeutics. IMPORTANCE Many priority bacterial pathogens such as P. aeruginosa encode both PPK1 and PPK2 enzymes to maintain polyphosphate homeostasis. While PPK1 and PPK2 have distinct structures and catalytic mechanisms, they are both capable of synthesizing and consuming polyphosphate; thus, PPK2 enzymes can compensate for the loss of PPK1 and vice versa. In this study, we identified the small molecule gallein as a dual-specificity inhibitor of both PPK1 and PPK2 enzyme families in P. aeruginosa. Inhibitor treatment reduced cellular polyP in wild-type (WT), Δppk1, and Δppk2 strains to levels that were on par with the Δppk1 Δppk2A Δppk2B Δppk2C knockout control. Treatment also attenuated biofilm formation, motility, toxin production, and virulence to a similar extent, thereby elucidating a hitherto-undocumented role of PPK2 enzymes in P. aeruginosa virulence phenotypes. This work therefore establishes PPK2s, in addition to PPK1, as valuable drug targets in P. aeruginosa and provides a favorable starting molecule for future inhibitor design efforts.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Xantenos/farmacología , Animales , Antibacterianos/uso terapéutico , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/microbiología , Inhibidores Enzimáticos/uso terapéutico , Células HEK293 , Humanos , Fenotipo , Fosfotransferasas (Aceptor del Grupo Fosfato)/clasificación , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Virulencia/efectos de los fármacos , Xantenos/uso terapéutico
13.
Acta Pharm Sin B ; 11(1): 283-299, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532193

RESUMEN

AL3810, a molecular dual inhibitor of the vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR), has earned the permission of phase II clinical trial for tumor treatment by China FDA. As a reversible ATP-competitive inhibitor, AL3810 targets ATP-binding site on intracellular region of VEGFR and FGFR, whereas, AL3810 lacking interplay with extracellular region of receptors rendered deficient blood-brain tumor barrier (BBTB) recognition, poor brain penetration and unsatisfactory anti-glioma efficacy. Integrin αvß3 overexpressed on capillary endothelial cells of BBTB as well as glioma cells illuminated ligand-modified liposomes for pinpoint spatial delivery into glioma. The widely accepted peptide c(RGDyK)-modified liposome loading AL3810 of multiple dosing caused hypothermia, activated anti-c(RGDyK)-liposome IgG and IgM antibody and pertinent complements C3b and C5b-9, and experienced complement-dependent opsonization. We newly proposed a pentapeptide mn with superb αvß3-binding affinity and tailored AL3810-loaded mn-modified liposome that afforded impervious blood circulation, targeting ability, and glioma therapeutic expertise as vastly alleviated immune opsonization on the underpinning of the finite antibodies and complements assembly. Stemming from attenuated immunogenicity, peptide mn strengthened liposome functions as a promising nanocarrier platform for molecular targeting agents.

14.
Microb Cell Fact ; 20(1): 12, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422075

RESUMEN

Clostridium sp. strain CT7 is a new emerging microbial cell factory with high butanol production ratio owing to its non-traditional butanol fermentation mode with uncoupled acetone and 1,3-propanediol formation. Significant changes of metabolic products profile were shown in glycerol- and glucose-fed strain CT7, especially higher butanol and lower volatile fatty acids (VFAs) production occurred from glycerol-fed one. However, the mechanism of this interesting phenomenon was still unclear. To better elaborate the bacterial response towards glycerol and glucose, the quantitative proteomic analysis through iTRAQ strategy was performed to reveal the regulated proteomic expression levels under different substrates. Proteomics data showed that proteomic expression levels related with carbon metabolism and solvent generation under glycerol media were highly increased. In addition, the up-regulation of hydrogenases, ferredoxins and electron-transferring proteins may attribute to the internal redox balance, while the earlier triggered sporulation response in glycerol-fed media may be associated with the higher butanol production. This study will pave the way for metabolic engineering of other industrial microorganisms to obtain efficient butanol production from glycerol.


Asunto(s)
Proteínas Bacterianas/metabolismo , Butanoles/metabolismo , Clostridium/crecimiento & desarrollo , Clostridium/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Proteoma/metabolismo , Fermentación , Proteoma/análisis
15.
World J Microbiol Biotechnol ; 37(1): 16, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33394223

RESUMEN

Succinic acid is a valuable bulk chemical, which has been extensively applied in food, medicine, surfactants and biodegradable plastics industries. As a substitute for chemical raw material, bio-based succinic acid production has received increasing attention due to the depletion of fossil fuels and environmental issues. Meanwhile, the effective bioconversion of lignocellulosic biomass has always been a hot spot of interest owning to the advantages of low expense, abundance and renewability. Consolidated bioprocessing (CBP) is considered to be an alternative approach with outstanding potential, as CBP can not only improve the product yield and productivity, but also reduce the equipment and operating costs. In addition, the current emerging microbial co-cultivation systems provide strong competitiveness for lignocellulose utilization through CBP. This article comprehensively discusses different strategies for the bioconversion of lignocellulose to succinic acid. Based on the principles and technical concepts of CBP, this review focuses on the progress of succinic acid production under different CBP strategies (metabolic engineering based and microbial co-cultivation based). Moreover, the main challenges faced by CBP-based succinic acid fermentation are analyzed, and the future direction of CBP production is prospected.


Asunto(s)
Lignina/metabolismo , Ingeniería Metabólica/métodos , Ácido Succínico/metabolismo , Biomasa , Técnicas de Cocultivo , Fermentación
16.
Biotechnol Bioeng ; 117(10): 2985-2995, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32946127

RESUMEN

Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose.


Asunto(s)
Biomasa , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Lignina/metabolismo , Thermoanaerobacterium/metabolismo , Bioingeniería , Biotecnología , Consorcios Microbianos , Xilanos/metabolismo
17.
J Control Release ; 327: 384-396, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32791079

RESUMEN

A d-peptide ligand of the nicotine acetylcholine receptors (nAChRs), termed DCDX, enables drug delivery to the brain when incorporated into liposomes and has shown promise as a nanocarrier for treating brain diseases. However, few reports have described the mechanisms whereby DCDX-modified liposomes traverse the blood-brain barrier (BBB). Here, we studied the molecular mechanisms enabling DCDX (and its associated liposomes) to cross an in vitro BBB using a simulated cerebral endothelium monolayer formed by brain capillary endothelial cells (bEnd.3 cells). We also examined the mechanisms whereby DCDX-modified liposomes cross the BBB in vivo using the brain efflux-index method. Transport of DCDX and its modified liposomes was dominantly mediated via the lipid raft/caveolae endocytic pathway. Both the endoplasmic reticulum (ER) and Golgi complex participated in delivering DCDX-modified liposomes to the plasma membrane (PM). DCDX-modified liposomes also participated in the endosome/lysosome pathway (with high-efficiency BBB crossing observed in vitro), while competing for the ER/Golgi/PM pathway. In addition, nAChR α7 did not promote the transportation of DCDX-modified liposomes in vivo or in vitro, as assessed with α7-knockout mice and by performing α-bungarotoxin (α-Bgt) binding-competition experiments. P-glycoprotein (P-gp) was identified as the main efflux transporter across the BBB, in vivo and in vitro. Using a xenograft nude mouse model of human glioblastoma multiforme, blocking the efflux function of P-gp with verapamil enhanced the therapeutic efficiency of DCDX-modified liposomes that were formulated with doxorubicin against glioblastoma. The findings of this study reveal novel mechanisms underlying crossing of the BBB by DCDX-modified liposomes, suggesting that DCDX-modified liposomes can potentially serve as a powerful therapeutic tool for treating glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Receptores Nicotínicos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Células Endoteliales/metabolismo , Humanos , Ligandos , Liposomas , Péptidos/metabolismo , Receptores Nicotínicos/metabolismo
18.
Rev Sci Instrum ; 91(7): 075114, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752872

RESUMEN

Aspherical optics have superior performance in many applications. However, precision metrology for an aspherical surface is a key stage in its manufacture. Subaperture stitching interferometry (SSI) is one of the mainstream testing methods for aspherical metrology. In many cases, Annular Stitching Subaperture Interferometry (ASSI) is more suitable for components having rotational symmetry because, compared to SSI, the number of motion directions that need to be adjusted is less. Although motion only along the optical axis is of concern in ASSI, inaccurate localization for subapertures may also occur due to the machining error at the optical center of the optics under test and errors in Cat's eye location, thereby leading to measurement errors. To overcome these problems, an accurate localization method for subaperture stitching is proposed. It is based on the maximum asphericity information between the reference spherical wavefront and the test aspherical surface. First, by using the test aspherical formula and theoretical spherical wavefront, we can calculate the minimum peak-to-valley (PV) value of maximum asphericity. The theoretical location of an optimal reference sphere, which corresponds to this value, can be obtained. Then, we perform a practical test, which starts at the initial zero position, and find an actual minimum PV value near its theoretical location. The difference between the theoretical location and the actual one is the compensation quantity. Finally, we execute ASSI measurement to aspherical optics. The location coordinate of each subaperture is compensated with the acquired quantity. Through the experiments, it can be concluded that the proposed method can improve the measurement accuracy of ASSI in terms of error elimination. The results produced by the new method are more desirable than those of the conventional one.

19.
J Control Release ; 322: 542-554, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277962

RESUMEN

Owing to the binding capacity to ɑvß3 integrin overexpressed on glioma, vasculogenic mimicry and neovasculature, the peptide c(RGDyK) has been exploited pervasively to functionalize nanocarriers for targeted delivery of bioactives. The former study in our group substantiated the immunotoxicity of c(RGDyK)-modified liposome, and this unfavorable immunogenicity is known to compromise blood circulation, targeting efficacy and therapeutic outcome. Therefore, we need to find a superior alternative ligand in order to evade the exquisite immuno-sensitization. We developed mn by structure-guided peptide design and retro-inverso isomerization technique, which was experimentally substantiated to have exceptional binding affinity to ɑvß3 integrin. Besides mn does not have affinity toward normal liver cells and kidney cells, which c(RGDyK) possesses in a certain degree. Warranting that mn and c(RGDyK) anchored ɑvß3, we formulated peptide-tethered liposomes and investigated in vivo bio-fate. Compared with c(RGDyK)-modified liposome, mn-modified liposome presented longer blood circulation and reduced ingestion by Kupffer cells with decreased retention in liver accordingly, benefitting from attenuated anti-liposome IgG and IgM response elicited by multiple sequential doses. Those merits strengthened the anti-glioma efficacy of ɑvß3-targeted doxorubicin-loaded liposomes, proving the importance of immunocompatibility in process of targeted drug delivery.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Liposomas/uso terapéutico , Ratones , Ratones Desnudos
20.
Sheng Wu Gong Cheng Xue Bao ; 36(12): 2755-2766, 2020 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-33398970

RESUMEN

Consolidated bioprocessing (CBP) is a multi-step process in a bioreactor, which completes hydrolase production, enzymatic hydrolysis, and microbial fermentation. It is considered to be the most promising process for the production of second-generation biofuels because of its simple steps and low cost. Due to the complexity of lignocellulose degradation and the butanol synthesis pathway, few wild microorganisms can directly utilize lignocellulose to synthesize butanol. With the development of synthetic biology, single-bacterium directly synthesizes butanol using lignocellulose by introducing a butanol synthesis pathway in the cellulolytic Clostridium. However, there are still some problems such as heavy metabolic load of single bacterium and low butanol yield. Co-culture can relieve the metabolic burden of single bacterium through the division of labor in different strains and can further improve the efficiency of butanol synthesis. This review analyzes the recent research progress in the synthesis of biobutanol using lignocellulose by consolidated bioprocessing from both the single-bacterium strategy and co-culture strategy, to provide a reference for the research of butanol and other biofuels.


Asunto(s)
Butanoles , Lignina , 1-Butanol , Biocombustibles , Fermentación , Lignina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...